On groups of order ${{8!} \mathord{\left/ {\vphantom {{8!} 2}} \right. \kern-\nulldelimiterspace} 2}$
نویسندگان
چکیده
منابع مشابه
. A T ] 2 8 A ug 2 00 8 THE CHOW RINGS OF THE ALGEBRAIC GROUPS
We determine the Chow rings of the complex algebraic groups E6 and E7, giving the explicit generators represented by the pullback images of Schubert varieties of the corresponding flag varieties. This is a continuation of the work of R. Marlin on the computation of the Chow rings of SOn(C), Spinn(C), G2, and F4.
متن کاملO ct 2 00 8 ON O - MINIMAL HOMOTOPY GROUPS
We work over an o-minimal expansion of a real closed field. The o-minimal homotopy groups of a definable set are defined naturally using definable continuous maps. We prove that any two semialgebraic maps which are definably homotopic are also semialgebraically homotopic. This result together with the study of semialgebraic homotopy done by H. Delfs and M. Knebusch allows us to develop an o-min...
متن کاملgroups of order $p^8$ and exponent $p$
we prove that for $p>7$ there are [ p^{4}+2p^{3}+20p^{2}+147p+(3p+29)gcd (p-1,3)+5gcd (p-1,4)+1246 ] groups of order $p^{8}$ with exponent $p$. if $p$ is a group of order $p^{8}$ and exponent $p$, and if $p$ has class $c>1$ then $p$ is a descendant of $p/gamma _{c}(p)$. for each group of exponent $p$ with order less than $p^{8} $ we calculate the number of descendants of o...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Bulletin of the American Mathematical Society
سال: 1900
ISSN: 0002-9904
DOI: 10.1090/s0002-9904-1900-00735-x